Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

5-Phenyl-1,3,4-thiadiazol-2-yl 2,3,4,6-tetra-O-acetyl-1-thio-β-d-glucopyranoside

Zao-Zao Qiu, Xin-Ping Hui and Peng-Fei Xu*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 73000, People's Republic of China
Correspondence e-mail: xupf@lzu.edu.cn

Received 11 October 2004
Accepted 3 May 2005
Online 9 July 2005
The structure of the title compound, $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}_{2}$, is described. This compound consists of a sugar ring and a heterocyclic base linked unusually by an S atom. The sugar is in a ${ }^{4} C_{1}$ chair conformation and forms dihedral angles of 49.54 (4) and $33.42(5)^{\circ}$ with the thiadiazole and phenyl rings, respectively. The S atom occupies an equatorial position of the sugar ring and lies 1.807 (2) \AA A out of the corresponding mean plane.

Comment

1,3,4-Thiadiazole derivatives display a broad spectrum of biological activities, such as fungicidal (Zou et al., 2002), antibacterial (Deibel et al., 2004), antidepressant (Clerici et al., 2001) and anti-epileptic (Masereel et al., 2002). However, the application of 1,3,4-thiadiazoles is limited because of their poor solubility both in organic solvents and in water. In the course of identifying new chemical structures that may serve as leads in the design of novel antiviral agents, we were particularly interested in the linking of thio-1,3,4-thiadiazoles to hydrophilic moieties such as D-glucose. The present structure determination is part of an investigation into the nucleophilic substitution of a bromosugar to a thiaheterocyclic compound. We report here the X-ray crystal structure determination of the title compound, (I) (Fig. 1).

The 2,3,4,6-tetra- O-acetyglucopyranosyl ring of (I) assumes a ${ }^{4} C_{1}$ chair conformation, with atoms C 2 and C 5 displaced from the $\mathrm{C} 1 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{O} 1$ mean plane. The mean $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-$ O (acetyl) bond lengths of 1.519 (2) and 1.422 (2) \AA, respectively, in the sugar moiety compare well with similar averages observed in pyranose sugars (Berman et al., 1967).

Figure 1
A view of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

The two endocyclic $\mathrm{C}-\mathrm{O}$ bonds, $\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{C} 5-\mathrm{O} 1$, are nearly equal [1.431 (2) and 1.418 (2) A , respectively]. The conformation about the exocyclic $\mathrm{C} 1-\mathrm{C} 6$ bond is gauchetrans, with torsion angles $\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 1-\mathrm{O} 1=-59.6(2)^{\circ}$ and $\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2=61.0(2)^{\circ}$.

The heterocyclic $1,3,4$-thiadiazole ring is planar to within experimental error and the lengths of the endocyclic bonds $[\mathrm{C} 15-\mathrm{N} 1=1.299(2) \AA$ and $\mathrm{C} 16-\mathrm{N} 2=1.303(2) \AA$] , clearly indicate that they are double bonds. The $\mathrm{N} 1-\mathrm{N} 2$ bond length of 1.375 (2) \AA is slightly shorter than the single-bond value of 1.393 (4) A in the hydrochloride of 5-(4-methoxyphenyl)-4-phenyl-1,3,4-thiadiazolium-2-phenylaminide (Cheung et al., 1992). The large deviation of the bond angle [S2-C15-N1 = $114.16(13)^{\circ}$] in the ring from the value of 120° usually found in trigonal-planar arrangements is common in five-membered rings (Downie et al., 1972). The phenyl ring linked to atom C16 forms a dihedral angle of 16.95 (6) ${ }^{\circ}$ with the heterocyclic plane.

The S atom of the thioglucosidic linkage bridges the sugar and heterocyclic rings. The dihedral angles between the mean plane of the sugar ring and the thiadiazole and phenyl planes are 49.54 (4) and $33.42(5)^{\circ}$, respectively. The orientation of the thiadiazole moiety relative to the glucose ring may be described by the torsion angles $\mathrm{N} 1-\mathrm{C} 15-\mathrm{S} 1-\mathrm{C} 5=$ $-107.0(2)^{\circ}$, $\mathrm{S} 2-\mathrm{C} 15-\mathrm{S} 1-\mathrm{C} 5=78.1(1)^{\circ}, \mathrm{C} 15-\mathrm{S} 1-\mathrm{C} 5-$ $\mathrm{O} 1=-67.2(1)^{\circ}$ and $\mathrm{C} 15-\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 4=176.3(1)^{\circ}$.

Experimental

5-Mecapto-2-phenyl-1,3,4-thiadiazole ($0.582 \mathrm{~g}, 3 \mathrm{mmol}$), α-acetobromoglucose ($1.230 \mathrm{~g}, 3 \mathrm{~mol}$) and $\mathrm{KOH}(0.168 \mathrm{~g}, 3 \mathrm{mmol})$ were reacted at room temperature for 12 h . The product was obtained via column-chromatograpic purification and the crystals were recrystallized by slow evaporation from petroleum ether-ethyl acetate (4:1)

organic compounds

(m.p. $424-426 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.018(s, 3 \mathrm{H}), 2.040$ $(s, 3 \mathrm{H}), 2.060(s, 3 \mathrm{H}), 2.088(s, 3 \mathrm{H}), 3.845-3.886(\mathrm{~m}, 1 \mathrm{H}), 4.166(d d, J=$ 2.0 and $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.302(d d, J=4.8$ and $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.137-5.205$ $(m, 2 \mathrm{H}), 5.309(t, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.444(d, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.459-$ $7.511(m, 3 \mathrm{H}), 7.899-7.922(m, 2 \mathrm{H})$.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}_{2}$
$M_{r}=524.56$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.010(2) \AA \AA \AA$
$b=10.526(2) \AA$
$c=28.65(6) \AA$
$V=2418.7(9) \AA^{3}$
$Z=4$
$D_{x}=1.440 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
$M_{r}=524.0 \mathrm{Cbic}, P 2_{1} 2_{1} 2_{1}$
Orthorhombin
Cell parameters from 7511 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=173.2 \mathrm{~K}$
Block, colourless
$0.35 \times 0.25 \times 0.20 \mathrm{~mm}$

Data collection
Rigaku/MSC Mercury CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (TEXSAN; Molecular Structure Corporation, 1999)
$T_{\text {min }}=0.825, T_{\text {max }}=0.947$
19569 measured reflections

Refinement

Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.00063 \mid F_{\mathrm{o}}{ }^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{\AA^{-3}}$
$w R\left(F^{2}\right)=0.046$
$S=1.06$
5499 reflections
317 parameters
H -atom parameters constrained
structure: TEXSAN; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: PLATON (Spek, 2003).

Financial support by the Natural Science Foundation of China (grant Nos. 20372027 and 20021001) and the Natural Science Foundation of Gansu Province (grant No. YS031-A21-002) is gratefully acknowledged. The collection and processing of the X-ray data in Professor K. Tatsumi's group by Dr T. Matsumoto (Nagoya University) is also gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TY1004). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Berman, H. M., Chu, S. S. C. \& Jeffrey, G. A. (1967). Science, 157, 1576-1577.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Cheung, K. K., Echevarria, A., Galemdeck, S., Maciel, M. A. M., Miller, J., Rumjanek, V. M. \& Simas, A. M. (1992). Acta Cryst. C48, 1471-1474.
Clerici, F., Pocar, D., Guido, M., Loche, A., Perlini, V. \& Brufani, M. (2001). J. Med. Chem. 44, 931-936.

Deibel, M. R. Jr, Bodnar, A. L., Yem, A. W., Wolfe, C. L., Heckaman, C. L., Bohanon, M. J., Mathews, W. R., Sweeney, M. T., Zurenko, G. E., Marotti, K. R., Boyle, T. P. \& Thorarensen, A. (2004). Bioconjugate Chem. 15, 333343.

Downie, T. C., Harrison, W. \& Rapper, E. S. (1972). Acta Cryst. B28, 1584 1590.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Masereel, B., Rolin, S., Abbate, F., Scozzafava, A. \& Supuran, C. T. (2002). J. Med. Chem. 45, 312-320.
Molecular Structure Corporation (1991). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1999). TEXSAN. Version 1.10. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zou, X. J., Jin, G. Y. \& Zhang, Z. X. (2002). J. Agric. Food Chem. 50, 14511454.

